

AVALIAÇÃO UNIFICADA

CADERNO DE QUESTÕES

INSTRUÇÕES

- Você está recebendo o CADERNO DE QUESTÕES e a FOLHA DE RESPOSTA.
- Para cada questão há somente uma alternativa correta. Assinale na folha de respostas a alternativa que julgar correta.
- Não é permitido nenhum tipo de consulta, incluindo Calculadoras e Códigos Jurídicos.
- O cartão de resposta não será substituído em hipótese alguma.
- Tempo máximo para entrega da prova: 3 horas
- Tempo mínimo para entrega da prova: 1 hora

CURSO/PERIODO

ENGENHARIA CIVIL - 8º PERÍODO - DATA: 01/10/2018

GABARITO RASCUNHO

01	Α	В	С	D
02	Α	В	С	D
03	Α	В	С	D
04	Α	В	С	D
05	Α	В	C	D
06	Α	В	С	D
07	Α	В	С	D
08	Α	В	С	D
09	Α	В	С	D
10	Α	В	С	D
11	Α	В	С	D
12	Α	В	С	D
13	Α	В	С	D
14	Α	В	С	D
15	Α	В	С	D
16	Α	В	С	D
17	Α	В	С	D
18	Α	В	С	D
19	Α	В	С	D
20	Α	В	С	D
21	Α	В	С	D
22	Α	В	С	D
23	Α	В	С	D
24	Α	В	С	D

Disciplina: Tratamento de Água e Saneamento Prof. Marcelo Jacomini Moreira da Silva

Questão 01

Dentre os parâmetros utilizados para caracterizar fisicamente a qualidade da água destacam-se:

- (A) sólidos suspensos e totais, temperatura e pressão.
- (B) turbidez, alcalinidade, temperatura e acidez.
- (C) cor, sólidos dissolvidos, pH, acidez e alcalinidade.
- (D) cor, turbidez, temperatura, odor e sabor.

Questão 02

Uma estação de tratamento de água – ETA recebeu duas remessas de produtos químicos, sendo: Sulfato de Alumínio e Compostos de Cloro. Esses produtos forma utilizados respectivamente:

- A) Floculação e Desmineralização
- B) Coagulação e Desinfecção
- C) Floculação e Desinfecção
- D) Coagulação e Floculação

Ouestão 03

Em projetos de estação de tratamento de água para abastecimento público, quando os ensaios em filtro piloto não puderem ser realizados, a taxa máxima de filtração para filtro de fluxo ascendente estabelecida pela ABNT deve ser de:

- (A) $180 \text{ m}^3/\text{m}^2 \text{ x dia.}$
- (B) $120 \text{ m}^3/\text{m}^2 \text{ x dia.}$
- (C) $320 \text{ m}^3/\text{m}^2 \text{ x dia.}$
- (D) $360 \text{ m}^3/\text{m}^2 \text{ x dia.}$

Disciplina: Hidráulica 2

Prof. Marcelo Jacomini Moreira da Silva

Questão 04

A capacidade de descarga de tubulações de esgoto ou drenagem funcionando a nível livre é dada pela expressão de Manning, na qual a vazão é proporcional à área da seção molhada, ao raio hidráulico elevado ao expoente 2/3, à raiz quadrada da declividade longitudinal, e inversamente proporcional ao coeficiente de rugosidade.

Dados:

Utilize: $2^{2/3} = 1,59$ e duas casas decimais

A substituição de uma galeria de 1,0 m de diâmetro que funciona com seção plena por duas galerias de 0,50 m, de mesmo material e que funcionarão nas mesmas condições, resultará, em relação à condição original:

- (A) no aumento de 31% da capacidade.
- (B) na redução para 31% da capacidade.
- (C) no aumento de 50% da capacidade.
- (D) na redução em 50% na capacidade.

Ouestão 05

Considere hipoteticamente uma galeria de macrodrenagem com 4 m de diâmetro, escoando uma vazão de 400 m³/s, a seção plena. Sabendo-se que a rugosidade para essa canalização é de 0,010, pode-se afirmar que a declividade necessária para essas condições de escoamento é de cerca de:

- A) π^2 m/m.
- B) $\pi^{1/2}$ m/m.
- C) π^{-2} m/m.
- D) $\pi^{-1/2}$ m/m.

Questão 06

O ressalto hidráulico consiste na passagem brusca e geralmente turbulenta do regime torrencial para o regime fluvial, verificando-se:

- A) aumento da profundidade crítica de escoamento.
- B) aumento da profundidade antes do ressalto.
- C) manutenção das profundidades de escoamento.
- D) aumento da profundidade após o ressalto.

Disciplina: Estruturas de Madeiras Prof. José Antônio de Lima Vieira

Questão 07

A madeira é um material que troca umidade com o ambiente, e essa troca de umidade está diretamente relacionada a variações de propriedades físicas e mecânicas do material. Com relação à variação do teor de umidade da madeira é correto afirmar o seguinte:

- a) a redução do teor de umidade da madeira vem acompanhada de expansão do material e aumento de resistência mecânica.
- b) a redução do teor de umidade da madeira vem acompanhada de expansão do material e redução de resistência mecânica.
- c) a redução do teor de umidade da madeira vem acompanhada de retração do material e redução de resistência mecânica.
- d) a redução do teor de umidade da madeira vem acompanhada de retração do material e aumento de resistência mecânica.

Questão 08

O estudo de estruturas em madeira inclui conhecimentos sobre as propriedades físicas da madeira. A redução das dimensões da madeira, devido à perda da água de impregnação, denomina-se:

a) umidade.

- b) densidade.
- c) elasticidade.
- d) retratibilidade.

Questão 09

A madeira usada na construção civil que tem menor grau de processamento é:

- a) Madeira roliça.
- b) Madeira serrada.
- c) Madeira beneficiada.
- d) Madeira em lâminas.

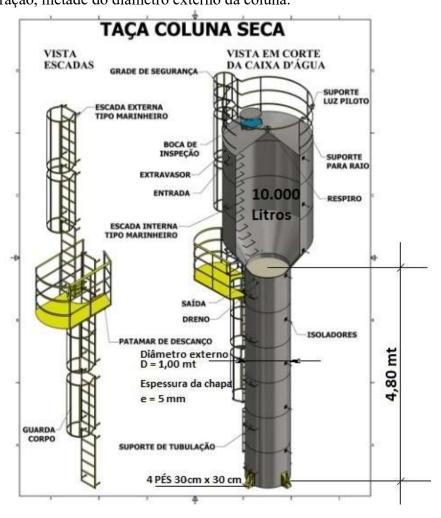
Disciplina: Estruturas de Aço

Prof. Teófanes Antônio Stacciarini Duarte

Para responder as questões de estruturas de aço, considere a caixa d'água abaixo montada com as seguintes especificações:

Litros - 10.000 lt

Diâmetro Externo da Coluna - 1,00 m


Altura de Coluna - 4,80 m

Altura dos 4 pés - 0,30 m

Altura do Cone - 0,45 m Diâmetro da Taça - 1,91 m Altura da Taça -1,80 m Altura Total - 7,05 m

1 - ESPECIFICAÇÃO DA COLUNA

Construída em chapa de aço carbono ASTM A36, espessura 5 mm. Adote módulo de elasticidade 200.000 MPa Limite de escoamento do aço = 250 MPa K coeficiente de esbeltez a flexão (NBR 8800) = 2 Raio de giração, metade do diâmetro externo da coluna.

Questão 10

Nessas condições, o índice de esbeltez da coluna será

- a) 9,6
- b) 18
- c) 9
- d) 19,2

$$\lambda = rac{L_f}{i}$$

Questão 11

Considerando a área do anel da coluna = pi x $(D^2 - d^2)$ / 4, o limite de escoamento do aço de 250 MPa e a carga de 10.000 litros de água (1 kgf = 10 N) e desconsiderando o peso próprio dos materiais, a tensão de trabalho em compressão (em MPa) na coluna será um número entre:

- a) 0 e 10
- b) 10 e 100
- c) 100 e 1.000
- d) 1.000 e 10.000

Questão 12

A força crítica é um importante parâmetro para avaliação dos limites de trabalho em estruturas metálicas. Essa força está relacionada com

- a) Tração
- b) Cisalhamento
- c) Momento fletor
- d) Flambagem

Disciplina: Trabalho de Curso I Prof: Flávio Silva Rezende

Para responder a questão 13 e 14, você deverá ler o trecho do texto abaixo. Retirado de um artigo publicado na Revista de Engenharia e Tecnologia no ano de 2016, o presente artigo discorre sobre análise da aderência entre o concreto e barras de fibras poliméricas de carbono (CFRP) via método dos elementos finitos.

ANÁLISE DA ADERÊNCIA ENTRE O CONCRETO E BARRAS DE FIBRAS POLIMÉRICAS DE CARBONO (CFRP) VIA MÉTODO DOS ELEMENTOS FINITOS

Luis Argenta, Andréia Fátima Tormen, Daiane de Sena Brisotto.

Resumo

As barras de aço como armadura em peças de concreto armado tem sido amplamente empregadas devido à vantagem econômica e à eficiência que este material proporciona. Tepfers (2006) afirma que a popularidade adquirida pelas barras de aço deve-se ao fato de que este é um material homogêneo e padronizado. Entretanto, determinadas condições ambientais podem levar à corrosão destas barras. Nesses casos, o uso da barra de fibra polimérica (FRP) tem sido considerado como uma alternativa ao uso de barras de aço como reforço em estruturas de concreto. Em ambos os casos, a aderência entre a armadura e o concreto é um aspecto de fundamental importância no comportamento da estrutura de concreto armado. O objetivo deste trabalho consiste em analisar numericamente o comportamento aderente entre o concreto e barras de fibras poliméricas de carbono com diferentes tratamentos superficiais, através do método dos elementos finitos. Para tal, com base em resultados experimentais disponíveis na literatura, será adaptado e recalibrado o modelo numérico de análise da aderência entre concreto e barras de aço previamente desenvolvido por um dos autores (BRISOTTO, 2012). A influência do acabamento superficial, do diâmetro das barras e da resistência à compressão do concreto foi avaliada, e os resultados numéricos mostram uma boa concordância com os valores experimentais.

Palavras-chave: aderência. concreto armado. barras de fibras poliméricas de carbono. modelo de aderência.

Ouestão 13

A respeito da estrutura desta imagem, percebe-se que todos são componentes, exceto:

- a) Título em português.
- b) Nome dos autores.
- c) Metodologia de pesquisa.
- d) Resumo do trabalho.

Ouestão 14

Em relação à seção *Resumo* do presente trabalho selecionado, não é possível afirmar que:

- a) As barras de aço não podem ser consideradas um material popular devido a sua característica heterogêneo.
- b) O processo de corrosão das barras de aço depende das condições ambientais em que se colocam tal material.
- c) O presente trabalho demonstra a realização de uma pesquisa documental e bibliográfica associada a análise de dados experimentais já publicados.
- d) O resumo demonstra que três parâmetros foram avaliados conforme o trabalho experimental.

Ouestão 15

Ao idealizar um projeto de pesquisa científica, é imprescindível a elaboração de um projeto. São funções do projeto de pesquisa, **EXCETO**:

- a) mostrar a estratégia da execução da pesquisa.
- b) exibir o sumário definitivo e os capítulos do trabalho almejado.
- c) esclarecer o tema e o caminho que será trilhado pelo pesquisador.
- d) indicar e especificar as fontes a serem utilizadas.

Disciplina: Concreto II

Prof. Renato Cardoso de Oliveira

Questão 16

Qual é a área de aço para uma viga retangular com os seguintes dados: d'=5cm; h=60cm; Md=250KN.m; CA-50; Fck=25Mpa, Bx=0,20.

$$0,68 \text{ bd } \beta_x f_{cd} - A_s \sigma_s = 0$$

- A) 8,2 cm²
- B) 9,2 cm²
- C) 15,4 cm²
- D) 16,4 cm²

Questão 17

Considere as seguintes afirmações sobre as hipóteses básicas utilizadas para a análise dos esforços resistentes de uma seção de viga em concreto armado:

- I. As seções transversais se mantêm planas após ocorrer deformação por flexão.
- II. A deformação das barras passivas aderentes em tração ou compressão deve ser a mesma do concreto em seu entorno.
- III. As tensões de tração no concreto, normais à seção transversal, não podem ser desprezadas, obrigatoriamente no ELU (Estado Limite Último).
- IV. A distribuição de tensões no concreto se faz de acordo com o diagrama parábolaretângulo, com tensão de pico igual a 0,85fcd

Está correto o que se afirma APENAS em:

- A) Todas alternativas.
- B) I e II
- C) I, II, III
- D) I, II, IV

Questão 18

Neste domínio de cálculo normalmente tem-se o concreto trabalhando no seu limite de encurtamento de 0,35% e o aço no patamar de escoamento, a seção é dita subarmada. Qual é este domínio?

- A) Domínio 4
- B) Domínio 1
- C) Domínio 2
- D) Domínio 3